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Overcoming the diffraction limit is crucial for obtaining high-resolution images and observing fine microstruc-
tures. With this conventional difficulty still puzzling us and the prosperous development of wave dynamics of
light interacting with gravitational fields in recent years, how spatial curvature affects the diffraction limit is an
attractive and important question. Here we investigate the issue of the diffraction limit and optical resolution on
two-dimensional curved space—surfaces of revolution (SORs) with constant or variable spatial curvature. We
show that the diffraction limit decreases and the resolution is improved on SORs with positive Gaussian curva-
ture, opening a new avenue to super-resolution. The diffraction limit is also influenced by the propagation di-
rection, as well as the propagation distance in curved space with variable spatial curvature. These results provide a
possible method to control the optical resolution in curved space or equivalent waveguides with varying refractive
index distribution and may allow one to detect the presence of the nonuniform strong gravitational effect by
probing locally the optical resolution. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.503223

1. INTRODUCTION

An inevitable problem in an imaging process is that the reso-
lution (the minimal distance between two points that can be
discriminated) of conventional optical imaging systems is lim-
ited by diffraction, as a consequence of the loss in the far-field
of evanescent waves carrying information on the high spatial-
frequency components. The need to overcome the diffraction
limit has led to the invention of the scanning near-field optical
microscope (SNOM), which achieves subwavelength optical
resolution [1] and has inspired tremendous works in subwave-
length imaging in recent years [2–8]. For instance, an in-
triguing idea to overcome the diffraction limit is using the
“superlens” made of silver, which was proposed by Pendry
in 2000 [2]. Later the idea was realized experimentally through
a planar left-handed lens [3] and material with negative permit-
tivity or permeability [4]. Furthermore, the “hyperlens”
was proposed and developed [5–7]. Besides, thanks to the pros-
perous development of laser technology for decades, super-
resolution fluorescence microscopy has obtained magnificent
achievements [9–15], starting with stimulated emission
depletion fluorescence microscopy proposed by Hell [9,10],
followed by other proposals such as reversible saturable
optical linear fluorescence transitions [11], stochastic optical
reconstruction microscopy [12], and photoactivated localiza-
tion microscopy [13]. However, all of these works about over-
coming the diffraction limit have been considered in flat space
without gravitational fields so that the size of the diffraction

spot was only decided by the wavelength of light and the
characteristics of the imaging system. It is well known from
Einstein’s general relativity (GR) theory that light follows
curved trajectories and unusual dynamics in the vicinity of a
black hole. In this work, we investigate the effect of spatial cur-
vature on diffraction limit, starting with Fraunhofer diffraction
in two-dimensional (2D) curved space.

Wave dynamics of light in gravitational field has attracted
much attention in recent years. Since measurable gravitational
effect can be rarely obtained in a laboratory, researchers have
introduced several analog systems to simulate gravitational
fields with laboratory devices [16–27], such as Bose-Einstein
condensates [16–18], extremely low group velocity electromag-
netic fluid [19], metamaterials with inhomogeneous refractive
index distribution [20,21], optical black-hole cavities [22], and
optical fibers [23]. Among these methods, one approach is to
study the behavior of light in curved space by directly con-
structing spatial geometries that mimic distortion by gravita-
tional field [28–43]. This field of research originates from
Batz and Peschel’s study of the nonlinear Schrödinger equation
and propagation of a Gaussian beam in 2D curved space [28],
inspired itself by Costa’s dynamics of particle constraint on the
surface [29]. Subsequently a series of theoretical [30–38] and
experimental [39–43] investigations have been carried out, in-
vestigating the Wolf effect in 2D curved space [30,31], spatial
accelerating wave packets [32], Gouy phase shift [33], topologi-
cal phase of photonic crystal [34], nonlinear dynamics [35–37],
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and, experimentally, the observation of self-focusing, diffrac-
tion-less propagation [39], accelerating wave packets [40],
group and phase velocity [41], the Hanbury Brown and
Twiss effect [42], and the surface plasmon polariton [43].
For the convenience and feasibility of calculation, the curved
spatiotemporal geometries usually considered were often surfa-
ces of revolution (SORs) embedded in the three-dimensional
space because of their rotational symmetry.

In this work, we take advantage of this paradigm to inves-
tigate the diffraction limit of light on SORs. The Gaussian (or
intrinsic) curvature of an SOR is defined as K � η1η2, where
η1,2 � 1∕R1,2 are the two principal curvatures associated with
two tangent circles with the maximal/minimal radii R1,2 for
every regular point on the surface. Then the Gaussian curvature
K is later used to study how curved surfaces affect the optical
effect. Starting with Fraunhofer and wave equations, we
analytically give the expression of intensity distribution of light
diffracted by a slit on SORs with constant Gaussian curvature,
and we investigate the intensity distribution on the geodesic
perpendicular to the propagation direction, as the mean to ex-
plore the diffraction limit, or equivalently the size of Fraunhofer
diffraction spot. Then the effect of variable Gaussian curvature
of curved space on the diffraction limit is explored. When the
propagation direction is not along the longitudinal direction on
SORs, we calculate the intensity distribution of the diffraction
field through the Huygens principle in curved space. This
method allows us to study propagation with arbitrary initial po-
sition and direction, instead of simply taking the equator as the
input plane and longitude as the propagation direction. We also
apply this method to other surfaces with variable Gaussian cur-
vature. Here we consider different propagation distances and di-
rections to calculate the diffraction intensity distribution and
compare them with the case of flat space. We demonstrate that
the positive spatial curvature decreases the diffraction effects to
get a better optical resolution, which gives a new method to
super-resolution. Moreover, the non-uniform distribution of
spatial curvature varies the optical resolution in different direc-
tions, indicating that the anisotropy of space can be investigated
by observing the variation of optical resolution in different di-
rections. The results presented here may also stimulate imaging

technologies in planar waveguides with transformation optics
and stir up electron optics in 2D curved material.

2. DIFFRACTION ON SORS WITH CONSTANT
GAUSSIAN CURVATURE

First, we consider a family of SORs with constant Gaussian
curvature (CGC) (see Fig. 1), which are described by the fol-
lowing metric:

ds2 � dz2 � r20 cos
2
q�z∕R�dφ2, (1)

where z is the proper length along the longitudinal direction, φ
is the rotational angle, r0 is an initial rotational radius at z � 0,
R � jK j−12 is the radius of Gaussian curvature K , q � sgn�K �,
and cosq�x� is defined as cos�x� for q � 1 (i.e., K > 0)
and cosh�x� for q � −1 (K < 0). When K > 0, the range of
z is (−πR∕2, πR∕2� for R ≥ r0, and it becomes
�−R arcsin�R∕r0�,R arcsin�R∕r0�� for R < r0. When K < 0,
z ∈ �−R arcsinh�R∕r0�,R arcsinh�R∕r0��. The propagation of
a light field in curved space satisfies the scalar wave equa-
tion [39],

ΔgU � �k2 �H 2 − K �U � 0, (2)

where Δg � ∂i� ffiffiffigp gij∂j�∕ ffiffiffigp is the covariant Laplace operator,
g is the determinant of metric tensor matrix g , gij is the inverse
matrix element of g , H is the extrinsic (or mean) curvature,
which is decided by the topology of curved space, and k is
the wavenumber of light. In this work, we consider a series
of SORs, which possess significantly small extrinsic curvature
H and Gaussian curvature K compared with wavenumber of
light k; thus, the term H 2 − K can be neglected. By using the
metric Eq. (1), the wave equation can be written as
∂2U
∂z2

−
q tanq�z∕R�

R
∂U
∂z

� �r0 cosq�z∕R��−2
∂2U
∂φ2 � k2U � 0:

(3)

Now, one can obtain the point spread function (PSF) of 2D
curved space by solving Eq. (3) under paraxial approxima-
tion [42],

Fig. 1. SORs with constant (a)–(c) positive and (d) negative Gaussian curvature K . Here (a) spindle with r0 < R, (b) sphere with r0 � R, and
(c) bulge with r0 > R, where R � jK j−12 is the radius of Gaussian curvature, and r0 is an initial rotational radius (or radius of equator) at z � 0. The
black/green solid lines are the lines of longitude/equator. The inset on the left side of (a) shows the schematic of a single slit (up) and double slits
(down) on surface, which are located at the equator (z � 0).
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hq�φ,θ, z� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

iλR sinq�z∕R�

s
exp

�
ikz � i

2k

Z
z

0

V eff ,q�z 0�dz 0
�

× exp
�
ikr20�φ − θ�2
2R tanq�z∕R�

�
, (4)

where λ is the wavelength of light, and φ, θ ∈ [−π, π] are the
rotational angles at z � 0 and z > 0, respectively.

V eff ,q � q�1�cos−2q �zR��
4R2 is the effective potential caused by the spa-

tial curvature. To investigate the optical spatial resolution in
curved space, we start from Fraunhofer far-field diffraction.
At the equator (z � 0�, we place a slit with width 2a, the center
of the slit is located at the origin of the (z, φ) coordinate system
as shown in the inset of Fig. 1(a), and we consider a plane wave
with amplitude U �z � 0� � 1 propagating along the longi-
tude toward the slit. The intensity of the diffraction field
can be obtained by

I sq�θ, z� �
����
Z a

r0

− a
r0

U �z � 0�hq�φ, θ, z�r0dφ
����2

� 1

R sinq�z∕R�
sinc2

�
kar0θ

R tanq�z∕R�

�
: (5)

Here, we neglect the quadratic term of φ under the Fraunhofer
far-field approximation. Similarly, in the case of a double-slit
system [as shown in the inset of Fig. 1(a)] with the width
of each slit being 2a and the distance between two slits being
d , the intensity distribution is given by

I dq �θ, z� �
1

R sinq�z∕R�
sinc2

�
kar0θ

R tanq�z∕R�

�

× cos2
�
kr0θ�a� d∕2�
R tanq�z∕R�

�
: (6)

Clearly, from Eq. (5), the width of the center fringe of sin-
gle-slit diffraction is fully determined by the zeros of the sinc
function, while the double-slit interference pattern from Eq. (6)
is modulated by the sinc function and its fine structure is fur-
ther modulated by the cosine function. From Eq. (5), if one
assumes the observation plane along the lines of latitude,
one can obtain a formula similar to Abbe resolution,
Δ � λ

2NAc
, to estimate the optical resolution in curved space,

where NAc � NAf
z∕R

sinq�zR� is the numerical aperture on curved

surfaces, and NAf � a
z is the numerical aperture in flat space.

Obviously, in the SORs with K > 0, we have sinq�zR� � sin�zR�,
and NAc > NAf , which tells that the optical resolution is im-
proved in the SORs with positive Gaussian curvatures. In con-
trast, in the SORs with negative K , we have sinq�zR� � sinh�zR�,
NAc < NAf , corresponding to a decreased resolution.

However, when the propagation of light fields is considered
in curved space, its intensity distribution must be considered
along a geodesic (the equivalent of a straight line in flat space)
perpendicular to the direction of propagation [38]. Thus, in
order to obtain the diffraction pattern along a geodesic in
curved space, we need to know the geodesics perpendicular
to the propagation direction and then calculate the intensity
of each point on the corresponding geodesics to observe. It

is known that the geodesic in curved space satisfies the follow-
ing equation [38]:

d2xσ

ds2
� Γσ

μν
dxμ

ds
dxν

ds
� 0, (7)

where Γσ
μν � 1

2 g
σρ
�
∂gρμ
∂xν �

∂gρν
∂xμ −

∂gμν
∂xρ

�
is Christoffel connection.

Substituting Eq. (1) into Eq. (7), we obtain the geodesic [38],

dφ � � κq

r0 cosq�z∕R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 cos

2
q�z∕R� − κ2q

q dz, (8)

where κq �
h
r20 cos

2
q�z∕R� dφds

i
initial

is a constant determined by

the initial condition. For any on-axis propagation position (z0,
φ0), the output plane composed of the geodesics that is
perpendicular to the optical axis can be described by the points
of (z, φ). To describe the transverse distribution of light, we
need to define a proper length x, which is the geodesic length
between the position (z, φ) and the on-axis propagation posi-
tion (z0, φ0). In practice, one should first obtain the proper
length x for a given z by substituting Eq. (8) into Eq. (1)
and integrating that equation from z0 to z. The proper length
x for the SORs described by Eq. (1) can be expressed as

x�z� � R arcsin

�
r0 sin�z∕R�ffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 − κ
2
1

p �
− R arcsin

�
r0 sin�z0∕R�ffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 − κ
2
1

p �
,

(9)

for K > 0, while for K < 0, it becomes

x�z� � ln

���� sinh�z∕R� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2�z∕R� � 1 − κ2−1∕r20

p
sinh�z0∕R� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2�z0∕R� � 1 − κ2−1∕r20

p ����:
(10)

Using the above Eqs. (9) and (10), for a given proper length
x distanced from the on-axis point (z0, φ0), in turn we can
obtain the value of the coordinate z. Then using Eq. (8), we
finally obtain the coordinate information of every point (z, φ)
on the output plane along the geodesics (perpendicular to the
optical axis). For the SORs with K > 0, we have

��φ − φ0� �
R
r0
arcsin

�
κ1 tan�z∕R�ffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 − κ
2
1

p �

−
R
r0
arcsin

�
κ1 tan�z0∕R�ffiffiffiffiffiffiffiffiffiffiffiffiffi

r20 − κ
2
1

p �
, (11)

while for K < 0, we have

� �φ − φ0�

� R
r0
ln

�
tanh�z∕R� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2�z∕R� � r20∕κ2−1 − 1

p
tanh�z0∕R� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2�z0∕R� � r20∕κ2−1 − 1

p �
: (12)

Since the other three coordinates z0, φ0, and z are known, φ
can be obtained from Eq. (11) or Eq. (12) directly. Substituting
the coordinates z and φ into Eqs. (5) and (6), we obtain the
intensity of a point with proper length x on the output plane.
Note that the sign of every proper length is defined by the sign
of��φ − φ0�. In this way, we can calculate the intensities of all
the points with different x, and finally the intensity distribution
along the different output planes can be obtained.
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Figures 2(a1) and 2(a2), respectively, show the intensity dis-
tributions of diffraction through a single-slit and of interference
through a double-slit at distance z � 300 mm on SORs with
positive, negative, and zero curvature (flat space). Compared

with the cases of flat space, the widths of the main-spot peaks
(i.e., the main-spot size of the central fringes for both single-slit
and double-slit cases) in the cases of K > 0 are smaller, which
means that optical resolution has been improved compared to

Fig. 2. Diffraction and interference on curved space. (a) Intensity distributions of Fraunhofer (a1) single-slit diffraction and (a2) double-slit
interference of light at z � 300 mm on SORs with different Gaussian curvature. (b) Variations of the central fringe widths Δxs and Δxd for
(b1) single-slit diffraction and (b2) double-slit interference with the propagation distance in different SORs. (c), (d) Evolutions of light fields
of Fraunhofer (c) single-slit diffraction and (d) double-slit interference in different spaces: (c1), (d1) K > 0, (c2), (d2) K � 0, and (c3), (d3)
K < 0. Here the parameters for SORs with R � 220 mm are taken as K � 20.66 m−2 for K > 0, and K � −20.66 m−2 for K < 0. Other
parameters are λ � 400 nm, r0 � 100 mm, a � 0.1 mm, d � 0.2 mm in (a2) and d � 0.8 mm in (d1)–(d3) for better visualization.
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that in flat space. As illustrated in Fig. 2(a), if the main-spot size
between the two zeros of the central fringe at distance
z � 300 mm for the single-slit case is, e.g., 1.20 mm in flat
space, it becomes 0.861 mm in the case of K > 0; in the dou-
ble-slit case, if the size of the central fringe is, e.g., 0.30 mm in
flat space, it reduces to 0.215 mm in the case of K > 0. In both
cases, the spot size has been reduced by 28.3%. In contrast, on
the SORs with K < 0, the width of the main-spot peaks be-
comes larger, indicating a degraded resolution. It would be
1.608 mm for the single-slit and 0.402 mm for the double-slit
case. To investigate the evolution of the width of the central
fringe as light propagates along the line of longitude, we con-
sider the interval Δxs,d between the first two zeros of the sinc
function around the central fringe. Here, the superscripts “s”
and “d” denote single-slit and double-slit cases, respectively.
Figures 2(b1) and 2(b2) demonstrate the impact of the spatial
curvature on the evolution of Δxs,d with increasing distance.
We can see that the size of the central fringe for both single-
slit and double-slit cases in the curved space with positive K is
always smaller than that in flat space. This effect is enhanced as
the propagation distance increases.

Figures 2(c) and 2(d) display the evolutions of diffraction
and interference light fields in different spaces. It is seen that,
in flat space, the diffraction and interference fields propagate
and expand along straight lines; however, the diffraction process
of light fields is suppressed/enhanced in curved space with con-
stant positive/negative Gaussian curvature. These evolution
features correspond to the narrowing or expanding effect of
the central fringe width in the curved spaces with positive
or negative values of K , compared with the case in flat space.

For conveniently discussing the influence of spatial curva-
ture on the central fringe widths of the diffraction pattern
in far-field regions, we define a relative quantity, δ � Δx−Δxf

Δxf
,

to quantify the narrowing or expanding effect of the central
fringe width (i.e., the main-spot width) of light fields as the
change of the diffraction limit in curved space. Here Δx
and Δxf are the widths for the central peak in curved and flat
space, respectively. Clearly, δ < 0 indicates that the optical res-
olution has improved, whereas for δ > 0 it has degraded.
Figure 3 shows the non-uniform dependence of δ with propa-
gation distance and spatial curvature. The large positive/nega-
tive Gaussian curvature and long propagation distance will
apparently decrease/increase the diffraction limit, respectively.
Spatial curvature offers therefore a new degree of freedom to
control the optical resolution and diffraction limit. This impor-
tant result can be put into perspective in a practical way.
Indeed, it was demonstrated that light dynamics on curved sur-
faces is equivalent to propagation in 2D planar waveguide
structures with nonuniform distributions of the refractive index
[36]. Transformation optics has been proposed to construct the
refractive index distribution corresponding to a particular
curved surface. The results we demonstrated here on curved
surfaces apply therefore to transformed planar waveguides since
these two systems share the same light dynamics. Therefore, a
planar waveguide structure with designed refractive-index dis-
tribution can be used to control the optical resolution beyond
the usual diffraction limit.

However, the analytical solution we obtained above is not
applicable when light propagation is not along the line of lon-
gitude, or the input plane is not along the equator anymore.
One must call on the Huygens principle to solve the general
case of light propagation on arbitrary curved surfaces along ar-
bitrary propagation direction [38]. According to Ref. [38], the
complex amplitude of the light field at the output plane on a
2D curved surface can be expressed by

U output�P� �
ffiffiffiffi
1

iλ

r Z
l
U input�P0�

eikL�P0, P�

L�P0,P�
A�P0, P�dl , (13)

where U output�P� is the amplitude on the output plane,
U input�P0� is the amplitude on the input plane, which can
be considered as constant under far field approximation, A(P0,
P) is the obliquity factor, which can be taken as unity when the
propagation distance is long enough (i.e., one order of magni-
tude larger than the transverse dimension on the input plane
[38]), and L(P0, P) is the eikonal function of light and is the
geodesic length between two points on the input and output
planes, which can be calculated by Eq. (8) for SORs described
by Eq. (1). In practice, we set the input plane located at the
object plane (in our case, we use single-slit as the objects);
meanwhile, the output plane is always chosen as the plane along
a geodesic perpendicular to the propagation direction. The in-
tensity distribution of light fields after a slit on curved space can
be obtained by numerically calculating thousands of geodesics
connecting the input and output planes according to the pro-
cedure described in Ref. [38]. Apparently, although this
method does not allow us to obtain the analytical solution,
it has no limit for the choice of incident plane, propagation
direction and distance. It is therefore an alternative to investi-
gate light propagation in curved space.

Figure 4 further demonstrates the intensity evolution of
light via a single-slit diffraction for three kinds of constant-
Gaussian-curvature SORs, when the incident plane is at a

Fig. 3. Effect of Gaussian curvature K of SORs on the change of
the diffraction limit at different propagation distance z. The black
dashed line denotes the case for the diffraction limit in flat space.
The zero value of δ means no effect on diffraction limit, compared
with the case in flat space.
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different angle with the longitude direction (i.e., the propaga-
tion direction is at an angle of Θ to the longitude direction).
Clearly, although the propagation direction is not along the
longitude direction anymore, the diffracting fields will focus
in curved space with positive Gaussian curvature. The propa-
gation direction does not affect at all the diffraction intensity
distribution of light beam when Gaussian curvature is constant
[note that the slight difference in intensity patterns is presented
due to the calculation errors of the integral in Eq. (13)]. The
effects induced by spatial curvature are more apparent at longer
propagation distances.

3. DIFFRACTION ON OTHER TYPICAL SORS
WITH VARYING SPATIAL CURVATURE

A. Two-Dimensional Schwarzschild Metric
Now let us consider the diffraction effect of light in a typical
model, such as a Schwarzschild black hole, which is a typical
solution of Einstein field equation, used for mimicking a light
bending near a black hole. In such a space, the spatial curvature
changes as spatial position varies. The spacetime metric of a
Schwarzschild black hole is characterized by the line element
as follows [44]:

ds2 � −

�
1 −

rs
r

	
c2dt2 �

�
1 −

rs
r

	
−1

dr2 � r2 sin2 Ψdφ2

� r2dΨ2, (14)

where c is the speed of light, rs is the Schwarzschild radius, and
Ψ and φ are the polar and azimuthal angles, respectively. Due
to the spherical symmetry of Eq. (14), we here only consider
the propagation of light diffraction along its equatorial plane.
Thus, we take Ψ � π∕2 for convenience without loss of gen-
erality. Then the spatial part of Eq. (14) becomes a Flamm’s
paraboloid (FP) [41] when omitting the temporal term, and
the metric becomes

ds2 �
�
1 −

rs
r

	
−1

dr2 � r2dφ2, (15)

with negative and variable Gaussian curvature K �r� � − rs
2r3.

For an arbitrary SOR, its metric can be rewritten as ds2 �
�1� 


dG
dr

�
2�dr2 � r2dφ2, where G can be seen as the height

of a point on the SOR, and the geodesic equation can be also

analytically obtained as [38] dφ � � κ
r
ffiffiffiffiffiffiffiffi
r2−κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
dG
dr

�
2

r
dr,

with κ � �
r2


dφ
ds

�
initial

being a constant determined by the

Fig. 4. Diffraction of light fields along different propagation directions on (a) spindle, (b) sphere, and (c) hyperboloid. The propagation direction
is described by the angle Θ between the longitude (black solid lines) and the incident direction. Here three typical propagation directions with
Θ � 30°, 45°, and 60° are considered, and the corresponding geodesics are indicated by the white, yellow, and green curves. D is the propagation
distance along these geodesics. The initial central position of the input plane is zi � −230.384 mm, −295.134 mm, and −166.415 mm in (a)–(c),
respectively, the parameters of these SORs are r0 � 100 mm, 220 mm, and 100 mm in (a)–(c), respectively, and other parameters are the same as in
Fig. 2.
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initial condition. In the current case, here G�r� �
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs�r − rs�

p
for r > rs. When we consider the diffracting

fields propagating from far to near the event horizon of
Schwarzschild black hole, as seen in Fig. 5(a), the evolution
of the diffraction patterns depends on both the propagation
direction and the propagation distance. From Fig. 5(a), we
can see that when the propagation distance is far away from
the event horizon, where the Gaussian curvature K �r� is very
small so that the space is close to flat space; thus, the evolution
of the diffraction field is initially like the case in flat space, while
it diverges as the field approaches the black hole, since the spa-
tial curvature becomes negatively large. Thus, we see that the
width of the diffraction central fringe is much wider than the
case in flat space due to stronger negative spatial curvature near
the black hole. As the curvature is negative everywhere on FP,
in principle the diffraction limit near the space of a black hole is
always larger than that in flat space.

B. Two-Dimensional Schwarzschild-de Sitter Metric
It is well known that the spacetime near a black hole may be
modified due to the presence of some matter-energy distribu-
tions [44]. One possible situation is that a black hole may be
immersed in the background of dark energy which is charac-
terized by a cosmological constant (Λ). Then Eqs. (14) and
(15) are modified with the existence of positive cosmological
constant Λ in the above subsection (Sec. 3.A), and the metric

becomes the Schwarzschild-de Sitter (SdS2) metric. By similarly
taking a 2D slice, the line element is given by

ds2 �
�
1 −

rs
r
−
Λr2

3

	
−1

dr2 � r2dφ2, (16)

which has two horizons. Now the Gaussian curvature of such
SORs becomes K �r� � Λ

3 −
rs
2r3, which is negative near the

black-hole horizon and becomes positive near the cosmological
horizon. Similar to the above considerations, if the input plane
we set is near the cosmological horizon and the light propagates
toward the black-hole horizon, the diffraction limit is initially
smaller than that in flat space when the propagation distance is
short at first, where the space is de-Sitter-domain and the spatial
curvature is almost positive. As shown in Fig. 5(b), the diffrac-
tion patterns are bending toward the optical axis in the short
regions. When light propagates into the space of Schwarzschild-
domain, curvature goes negative, and the width of main-spot
peak increases rapidly, which increases the diffraction limit [also
see Fig. 5(b1)]. Thus, we can find that in the de-Sitter-domain
regions optical diffraction limit becomes smaller, indicating a
better resolution of optical imaging, while optical diffraction
limit increases quickly (i.e., a worse imaging resolution) in
the Schwarzschild-domain regions.

Fig. 5. Diffraction of light fields along different propagation directions on (a) an FP surface, (b) a SdS2 surface, and (c) a PPSS surface. The
propagation direction Θ is defined the same as in Fig. 4, and three typical directions Θ � 3°, 9°, and 15°, corresponding to the white, yellow, and
green geodesics, respectively, are plotted. The surfaces are colored by blue/red to indicate the regions with positive/negative Gaussian curvature. The
black dotted lines in (a3), (b3), and (c3) show the variation of diffraction limit in flat space. Here the initial central positions of the input plane are
ri � 460 mm in (a), ri � 283.66 mm in (b), and zi � 100 mm in (c), the Schwarzschild radius rs � 30 mm in (a) and (b), and the cosmological
constant is Λ � 33.33 m−2 in (b). In (c), we take α � 100 mm, B � 10 mm, β � 20 mm, and ε � −1.25π. Other parameters are the same as in
Fig. 2.
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C. Diffraction on the Surface with a Periodic
Peanut-Shell Shape
In this subsection, a special SOR with periodic structures [see
Fig. 5(c)], called periodic peanut-shell shape (PPSS) [31,45], is
introduced out of our interest. For convenience, we apply
longitudinal proper length z and rotational angle φ coordinates
system (z, φ) to describe this surface. The metric of PPSS is
given by [31]

ds2 � dz2 �
�
α − B cos

�
z
β
� ε

	�
2

dφ2, (17)

where α is the average rotational radius, B is the amplitude of
the periodically variable radius, β is the period, and ε is the
initial phase. On this SOR, the Gaussian curvature is given

by K �z� �
h
1 − α

α−B cos �zβ�ε�
i
∕β2, which has the oscillating

property depending on the longitudinal proper length z and
may lead to positive and negative spatial curvatures. Thus,
according to the above discussion, it is expected that the diffrac-
tion limit on such PPSS also reflects the oscillation behavior.
Figure 5(c) shows the wavy feature of diffracting light fields with
the increasing propagation distance.We observe that the diffrac-
tion field may rapidly expand in certain regions while presenting
a converging feature in other regions, respectively, indicating in-
creased or decreased optical resolution, because the distribution
of Gaussian curvature on PPSS is alternatively changing between
positive and negative. Meanwhile, the spatial width of the
diffraction central fringe is also found to depend on both the
propagation direction and distance as shown in Fig. 5(c3).

Finally, in Fig. 6, we plot how the propagation direction on
different SORs affects the diffraction limit at different propa-
gation distances. It is found that on the SORs with constant
Gaussian curvature, the diffraction limit does not vary with
the propagation direction at fixed propagation distances.
Clearly, as discussed above, the diffraction limit is smaller
for positive K and larger for negative K , compared with the
flat-space case. However, the relative quantity, δ, changes with
propagation direction for other families of SORs with non-con-
stant spatial curvature. On the surface of FP, it is seen that, as
the angle Θ increases, the diffraction limit tends to decrease and
approach its value in flat space since the propagation of the light
beam gradually deviates from the Schwarzschild black hole.
Meanwhile, the propagation distance also impacts the diffrac-
tion limit. On the SORs of the SdS2 metric, the change of the
diffraction limit as a function of the propagation direction is

similar to that on FP, but the value of the related quantity
δ can change from positive to negative and the sign of δ is de-
pendent on the local spatial curvature. Similarly, on PPSS, the
relative quantity δ oscillates as Θ grows, which indicates how
optical resolution deteriorates or improves compared with that
of flat space. From our result, since the non-uniform distribu-
tion of spatial curvature varies the optical resolution, the isot-
ropy and anisotropy of space may be reflected by the
observation of the variation of optical resolution. Thus, we
may detect the presence of anisotropic universe and spacetime
by observing the variation of optical resolution in different
propagation directions and distances.

4. CONCLUSION

In summary, we have investigated the effect on single-slit dif-
fraction or double-silt interference of light in curved space with
constant and variable Gaussian curvature. The result demon-
strates that the width of the main (central) fringe (indicating the
optical imaging resolution) in diffraction patterns becomes nar-
rower when Gaussian curvature is positive and wider when
Gaussian curvature is negative, compared with that in flat
space, which gives a new possibility to improve the imaging
resolution using a curved surface with positive curvature.
Using the transformation from a curved to a flat plane
[36,37], one can use 2D planar waveguides with an equivalent
refractive index profile to improve imaging resolution. For ex-
ample, by conformally transforming a sphere to a plane with
nonuniform refractive index distribution [37], the results we
obtained on spheres should be also emerged in new trans-
formed planes since they share same dynamics of light [36].
This provides a more practical method to realize optical
super-resolution through a planar waveguide with the designed
refractive index distribution. In addition, both the design of
curved surfaces and refractive index profiles can be considered
in freeform optics [46–49] to enhance imaging performance.
Moreover, the diffraction limit may vary when the spatial cur-
vature of the SORs is no longer a constant, and it may oscillate
when the curvature alternates between positive and negative
values, like on the SORs of PPSS. The effect increases when
the magnitude of Gaussian curvature is larger and the propa-
gation distance is longer. We also show that the resolution
keeps constant for the arbitrary propagation direction of light
when the spatial curvature is constant, and it varies as the local
spatial curvature changes. This tells us that the uniformity of
space may be reflected by the change of the diffraction limit.
Our results will help in the control of optical resolution on
curved surfaces and may also probe the non-uniform spacetime
in universe space, or—in a more realistic perspective—one can
expect a method to realize the optical super-resolution in a pla-
nar integrated waveguide structure in the principle of transfor-
mation optics. Moreover, our results may also provide
inspiration for electron optics [50,51] extending into synthetic
curved spaces [52] or non-Euclidean surfaces [53].
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Fig. 6. Dependence of the relative quantity δ on the propagation
direction at different propagation distances (a) D � 400 mm and
(b) D � 500 mm. Other parameters are the same as in Figs. 4 and 5.
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